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CHOICE OF PULSE-FLUIDIZATION CONDITIONS FOR

MIXING GRANULATED MATERIALS
M. V. Aleksandrov, V. V., Malyushin, UDC 66.096.5
V. G. Bakalov, and M. F. Mikhalev

A method is given for determining the best pulse-fluidization conditions for accelerating the
mixing of components in a granular material,

These measurements on the mixing kinetics of granular materials in pulse fluidization provide
evidence on the rate of the process in relation:to the working conditions, i.e., the frequency f, mark-space
ratio S, and gas'flow rate. Visual observations show that rapid mixing corresponds to a definite state of
the layer, which may be characterized as the active-piston state. This occurs if the maximum pressure
under the bed during the pulse does not exceed (1.5-2.5)Mg/Se and causes bed expansion, with only a small
amplitude of the oscillation of the upper boundary relative to the mean position and the absence of ejection
above the bed. This is termed region A (Fig. 1) in S—f coordinates. In region B, there are large bubbles,
whose escape into the space above the bed is accompanied by considerable ejection of material. In region C,
the layer remains largely immobile and very little particle displacement occurs,

However, the mixing rate is not constant within region A for any combination of f and S; there is a defi-
nite pair of values for fand S (inour case f=5Hz and S = 0.5) that produces the most vigorous mixing. This has
been observed elsewhere [1], where the effect was described in terms of a natural oscillation frequency of the
bed.

The hydrodynamic features of the bed were examined by cinephotography in parallel with gas pressure
measurement under the distribution grid. Figure 2 shows characteristic pressure oscillograms for f of 1-5 Hz
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Fig. 1. Region of existence of active
piston: A) active-piston region; B)
gas -bubble fluidization region; C)
immobile bed region; f in Hz,

and S/f = 0.1 for the flow chopper. If f exceeds 1 Hz, the pressure waveform during one cycle reproduces all
the elements obtained with f =1 Hz, The amplitude of the main pressure pulse is unaltered, and there is little
change in the negative pressure arising under the bed, nor is there much variation in the amplitude of the
secondary compression. This indicates that the bed behaves as a permeable piston for this range in f. The
oscillograms serve to define the natural oscillation frequency of the bed. The recording for f =1 Hz indicates
the half-period T/2 for the natural oscillations as 0,1 sec. The recording for f = 5 Hz shows that in this case
the gas is supplied in resonance with the natural oscillation, and the most vigorous mixing occurs under these
hydrodynamic conditions,

Therefore, it is necessary to predict or calculate the natural oscillation frequency of a bed of ‘granular
material in relation to the dimensions of the apparatus and the properties of the material. This is possible by
mathematical description of the motion of the bed in response to the gas pressure pulse. We consider the
motion of the gas in a space bounded at the top by a mobile gas-permeable bed of granular material and at the
bottom by the base of the apparatus and the flow chopper. A mathematical description of this system (Fig, 3)
includes the force-balance equation for the bed as a whole and equations for the gas mass balance in the layer
under the bed and the state of the gas under isothermal conditions.

The following is the force-balance equation for the bed:

d%z

dr?

The lower boundary of the bed corresponds to the coordinate zy, and the bed can move only in the region z > zy;
the frictional force Fy, applied to the bed by the wall of the apparatus is determined by the method of [2]:

do,Se=p, (1 —&)g —a)H — 1) Sg—p, (1 — €)(g +a) (H — % —dx) S+ T,dxaD. )

M = — Mg + (P, — Py)S,— Fy,. 1)

This expression has been written for a cylindrical apparatus provided that the bed porosity € remains con-
stant; the tangential stress ¢ is related to the normal stress ox by

s = Tplah, (3)
where A and « are the lateral-pressure and friction coefficients.

Equation (2) can be integrated with the boundary condition 7 = 0 for x = H:
A
T, = ?‘ {exp [Bod (H — x)] — 1}, (4)

where Ay = ppe (1 —€)(g + a); B = 4/D; (1) contains the integral value of the frictional foree acting on the entire
surface of contact between the bed and the wall, so

H
Fy = 5 TpdxnD = By (g + a) M, (5)
. 0 '
where
1 H H H
B T e —— -4 — T .
" 4ar D (exP D ])
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Fig. 2. Oscillograms for gas pres-
sure under bed: a) f =1 Hz, S =0.1;
b) 2 and 0.2, respectively; c) 3 and
0.3;d) 4 and 0.4; e) 5 and 0,5.

The frictional force is thus dependent on the instantaneous acceleration of the bed; we substifute the values
into (1) to get
d% — (Pi_‘Po)Se — g, (6)
dv? M1 +B)

The gas-balance equation for the space under the bed includes the rate of entry of the gas from the com-~
pressor and the rate of loss of gas through the bed. The bed may also be displaced, so we write

(Gy— Gg) dv = d [py (S,2 +- Vi), )

where Gy = f(Py) is the equation characterizing the compressor (in our case Gy = [2-3° 107 (P1— Pyl 10 Y. The
gas flow rate due to filtration through the lower boundary of the bed is given by

Gz = A "E)‘! Sepl, (8)

|x0

and to use this we need to solve the equation for nonstationary passage of gas through a bed of granular ma-
terial:

o _ 9 (C_pﬁ) (9
o ox

We assume that the porosity of the bed remains constant (¢ = const) and that the gas density varies only slightly
within the bed (o = const). These equations enable us [3] to transform the filtration equation to

oP 2P
=A . 1
ot 0x? (10)
The filtration coefficient A is [2] given by
L - W (11)
K (1 —e¢fa’p
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Fig. 3. Theoretical
scheme for apparatus
for purposes of model.

where a is the specific surface of the granular material in m¥m? and K is the Kozeny ~Karman constant.
These assumptions do not introduce much error into the equation describing the gas pressure under the bed,
but they do not allow us to trace the propagation of the gas-compression wave within the bed, e.g., in the
disruption of the latter,

The initial condition for solving (10) is characterized by the pressure distribution over the height of the
bed P(x, 0) = ¢(x), while the boundary conditions that incorporate the variation in gas pressure under the bed
are P(0, 7) = Py(1); PH, T) =P,.

The solution to (10) in analytical form is [4]

. i 92 9/
P, 1) = Py() ——= [Py () — Pol + 2 [FJ (000 —PutPPOx
X ——;_]1—) sin%ndn} exp [—— (%)ZAZT }sin % x. (12}

Equations (6) and (7) form a system that describes the pressure variation under the bed and the motion of the
bed as a permeable piston:

d* Py— P,

i MU LB)eTE
dp, PSe dz . G—G P, | as
dt  Sz+V, dv | Sez-Ve
Gy = [ (Py).

System (13) was solved by computer; the infiltration equation has to be solved at each step of integration
in (13), while the boundary and initial conditions P;(7) and ¢(x) for defining P(x, 7) in each successive step are
generated from the result for the previous step.

Figure 4 shows the gas pressure variation under the bed during the cycle of the chopper operation as
recorded and as calculated from (13); the calculated and observed curves are essentially the same up to point
1, but subsequently the calculated curve is only in qualitative agreement with experiment, although the period
of the natural oscillation given by the calculated curve agrees satisfactorily with the observed period.

Figure 5 is a nomogram constructed for determining the natural frequency on the basis of the calcula-
tions from this model.

If f is derived from the mass of the bed, the volume of the space under the bed, and the diameter, one
can determine the optimum conditions providing most rapid mixing of the granular material.
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Fig. 4. Variation in gas pressure under bed in one cycle: I) observed; II) theoretical curve;
AP = Pi - Po, Pa; T, sec,

Fig. 5. Nomogram for determining natural frequency of bed; D in m, V, in m?, Min kg, f in
Hz,

NOTATION

is the filtration coefficient, m%/sec;

is the diameter; m;

is the depth of the bed, m;

is the mass of bed, kg;

are the gas pressures over the bed and under the bed, Pa;
is the grid area, m?;

is the underbed volume, m3;

is the ordinate in bed relative to lower boundary, m;

is the ordinate of the upper boundary relative to grid, m;
is the porosity;

is the dynamic viscosity, Pa * sec.
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